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Four important known regularities for several pure substances have been
described using a statistical mechanical equation of state (EOS) derived by
Deiters. The equation of state depends on three temperature-independent
parameters, which can be obtained from the critical constants. The studied
regularities included: (i) near linearity of the reduced isothermal bulk modulus
as a function of reduced pressure, (ii) the common bulk modulus point on the
isotherms of the reduced bulk modulus versus reduced density, (iii) near
linearity of the Zeno contour of reduced temperature against reduced density
from the Boyle temperature to the triple point, and (iv) near linearity of the
mean density of a saturated liquid and its equilibrium vapor as a function of
temperature, called the ‘‘law of rectilinear diameter.’’ The results for several
fluids have been compared to the available experimental data. The predictions
are often satisfactory in the sensitive regions.
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1. INTRODUCTION

A precise equation of state (EOS) valid over large intervals of temperature
and pressure is a powerful tool for the prediction of thermodynamic prop-
erties. As has been pointed out in previous work [1], any sensible EOS is
expected to satisfy known regularities. Based on three important regulari-
ties (Zeno line, Tait–Murnaghan, and common bulk modulus point), ten
van der Waals type EOS were tested in our earlier work for their ability to
predict the Zeno contour and the isothermal bulk modulus. As mentioned



previously, some cubic EOS yield a nearly accurate Zeno line from the
Boyle temperature to the triple point, whereas the predictive ability of the
bulk modulus regularity obtained from most cubic EOS is usually poor,
especially at higher densities.

In this paper, we show that, unlike the cubic van der Waals type EOS,
a precise statistical-mechanical EOS, called the Deiters EOS [2, 3], describes
the most important regularities. The results show that the Deiters EOS
gives better agreement with experiment for both the bulk modulus and
Zeno line regularities than the other van der Waals type EOS studied in
our previous work. The main objective of this work is therefore to study
the performance of the Deiters EOS in predicting the most important
regularities. Since the Deiters EOS has a theoretical basis, analysis of the
regularities in terms of molecular size and shape is possible. Four of the
best known regularities, studied in this work, are the following:

(a) Near linearity of the isothermal bulk modulus (reciprocal com-
pressibility) of a liquid or supercritical fluid as a function of
pressure. This regularity was first noticed by P. G. Tait over 100
years ago and is now called the Tait–Murnaghan regularity
[4, 5].

(b) Huang and O’Connell have found that isotherms of the bulk
modulus as a function of density intersect at a common point
[6]; at this density, the bulk modulus is independent of tempera-
ture. They checked the existence of this bulk modulus point on
over 250 liquids, and used it as the basis of a correlation scheme
for the volumetric properties of compressed liquids and liquid
mixtures. The location of the common modulus point of course
depends on the particular liquid.

(c) Near linearity of a contour in the temperature-density plane
along which the compressibility factor (Z — P/rRT), equals
unity. This Z=1 contour, called the Zeno line, passes from the
Boyle temperature at low-density to around the triple point in
the liquid region. The properties of the Zeno line were described
previously [7].

(d) Approximate linearity of the average of densities of the coexist-
ing liquid and vapor phases in the temperature-density plane.
This regularity called the line of rectilinear diameters, and lies in
the subcritical region. It has been shown that the situation for the
near-critical singularity in the diameter remains ambiguous for
normal fluids [8].
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2. DEITERS EQUATION OF STATE

An analytical equation of state based on statistical-mechanical per-
turbation theory was derived by Deiters for a set of spheres interacting
through a square-well potential [2, 3]. This equation of state can be
written in the reduced form,

Pr

rrTr
=

1
Zc

31+cc0
4g − 2g2

(1 − g)3 − arbr rr
Teff

Tr
[exp(1/Teff) − 1] I(br rr)4 (1)

where Zc — PcVc/RTc is the critical compressibility factor, Tr — T/Tc,
Pr — P/Pc, and rr — r/rc are the reduced temperature, pressure and
density of the fluid, respectively, and the characteristic constant c0=0.6887
can be regarded as a deviation of the real pair potential from the rigid-core
model. The packing fraction g and the effective temperature Teff are defined
as

g=(p/6) rNAs3 (2)

Teff=
lbr rr+(cTr/ar)

y(br rr)
(3)

where NA is Avogadro’s constant, l — − 0.06911c is a parameter that
introduces three-body effects into the EOS, and s is the molecular diam-
eter, which appears in the square-well potential. The functions I(br rr) and
y(br rr) depend on the single variable br rr, and their forms are as follows:

I(br rr)=(c/c)2 C
5

n=0
(n+1) hn cn(br rr) (4)

y(br rr)=f2 − c−5.5f(1 − f)+(1 − 0.65/c)(1 − f)2 (5)

where

h0=7.0794046, h1=12.08351455, h2=−53.6059

h3=143.6681, h4=−181.1554682, h5=78.5739255
(6)

c=1 − 0.697816(c − 1)2 (7)

and f is the relative free volume, i.e.,

f=exp[cc0(3g2 − 4g)/(1 − g)2] (8)
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Table I. Critical Properties and Deiters Characteristic Parameters for Several Substances
(Values of critical constants are taken from the reported references in the last column)

Substance Tc (K) Pc (MPa) rc (mol · L−1) Zc ar br c Ref.

Ne 44.42 26.54 23.88 0.303 0.6855 0.2223 1.000 20
Ar 150.69 48.63 13.25 0.289 0.6883 0.2205 1.000 21
Kr 209.39 54.96 10.87 0.290 0.6872 0.2237 1.000 22
Xe 289.74 58.34 8.37 0.290 0.6868 0.2124 1.000 23

CH 4 190.53 45.98 10.16 0.288 0.6876 0.2243 1.000 21
C 2H 6 305.34 48.71 6.87 0.280 0.8980 0.2181 1.121 21
C 3H 8 369.85 42.48 5.00 0.276 1.0218 0.2149 1.176 21

n-C 4H 10 425.16 37.96 3.92 0.274 1.1158 0.2161 1.212 16

N 2 126.19 3.395 11.21 0.289 0.6875 0.2250 1.000 21
O2 154.58 5.043 13.63 0.288 0.6870 0.2269 1.000 24
F2 144.42 5.173 15.603 0.276 0.6855 0.2309 1.000 17

CO2 304.13 7.377 10.625 0.275 1.0962 0.2171 1.205 21

It has been shown that the Deiters EOS gives good predictions for
vapor-liquid equilibrium (VLE) and PVT properties for nonpolar and
weakly polar substances [9]. Equation (1) has three adjustable parameters,
the reduced characteristic temperature ar, the reduced covolume br, and a
correction factor c for the number density, which can be interpreted as
a shape parameter, with c=1 for spherical molecules. Baonza and colla-
borators [9] have suggested a general procedure to obtain these three
parameters from a knowledge of the critical variables. The values of
Deiters characteristic parameters for several substances are given in Table I.

3. REGULARITIES IN DENSE FLUIDS

3.1. Linearity of BT Versus P

The reduced bulk modulus BT, which is a mechanical property, can be
written as

BT=
Zc

Tr

1“Pr

“rr

2
Tr

(9)

The reduced bulk modulus of a dense fluid has been empirically found to
be linear in the reduced pressure for each isotherm, i.e.,

BT=B0, T+B −

0, TPr (10)
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where B0, T and B −

0, T are temperature-dependent parameters. Such linearity
is known as the Tait–Murnaghan regularity. This regularity is satisfactorily
reproduced for a number of successful empirical equations of state, such
as the Peng–Robinson, Soave–Redlich–Kwong, and modified Patel–Teja
equations of state [1].

3.2. Common Bulk-Modulus Point

Another regularity in the behavior of the reduced bulk modulus has
been reported by Huang and O’Connell [6], which states that the iso-
therms of BT versus rr intersected at a common point, called the common
bulk-modulus point. The value of BT is independent of temperature at this
density, i.e.,

1“BT

“Tr

2
r0, r

=0 (11)

where r0, r is the reduced density of the fluid at the common bulk-modulus
point. This regularity lies in the liquid region, and the location of the
common modulus point of course depends on the particular liquid. As has
pointed out in our previous work [1], most of the cubic van der Waals
type EOS do not show a common intersection point, but in this work we
show that the Deiters EOS predicts a (nearly) common modulus point,
consistent with the empirical findings of Huang and O’Connell.

3.3. Zeno Contour

For a wide range of normal fluids, including nonpolar and weakly
polar fluids, a contour in the temperature-density plane along which the
compressibility factor equals unity, known as the Zeno line, has been
empirically observed to be nearly linear from the Boyle temperature at low
density to around the triple point in the liquid region. The regularity pro-
vides a significant constraint for testing or improving volumetric equations
of state. The properties of the Zeno contour are described by Ben-Amotz
and Herschbach [7]. The Zeno condition can be written as

Tr=w1 − w2 rr (12)

where w1 and − w2 are the intercept and slope of the Zeno line, respec-
tively. At the low-density limit, with rr Q 0, the intercept of the Zeno line
in a Tr–rr plane is specified by the reduced Boyle temperature.
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The Zeno line phenomenon has been found to extend to a wide range
of fluids well beyond the realm of standard corresponding states, with
strong correlations to the line of rectilinear diameters from subcritical to
supercritical conditions [10].

3.4. Rectilinear Diameter

The average of the densities of the coexisting liquid and vapor phases,
called the ‘‘diameter,’’ is defined as

rd —
rl+rv

2
(13)

Fig. 1. Comparison between the experimental and predicted Tait–Murnaghan regularity
for noble gases. Predictions are represented by continuous lines and the experimental data
by symbols. Experimental values are determined from Eq. (15). The heat-capacity ratio and
the speed-of-sound data are taken from Refs. 12 to 15.
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where rl and rv are the saturated density of the liquid and vapor, respec-
tively. Empirically, it was shown that the reduced diameter rd, r — rd/rc is a
linear function of the reduced temperature Tr in the temperature-density
plane [8],

rd, r=A1 − A2Tr (14)

where A1 and − A2 are the intercept and slope of the rectilinear diameter,
respectively.

This regularity, called ‘‘the law of rectilinear diameters,’’ lies in the
subcritical region, and it has been shown that it breaks down in the vicinity
of the critical point [10].

Fig. 2. Same as Fig. 1 for CH 4, C 2H 6, C 3H 8, and n-C 4H 10. Experimental values are
determined from Eq. (15). The heat-capacity ratio and speed-of-sound data are taken from
Ref. 16.
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4. RESULTS AND DISCUSSION

The Deiters EOS has been used to predict the PrT equilibrium surface
over a large pressure range and the second virial coefficients for several
pure substances, such as noble gases, n-alkanes, and other selected sub-
stances such as O2, N 2, F2, and CO2 [9]. It was shown that the predictions
are very satisfactory, being within the experimental uncertainties in most
cases. The equation was also shown to give good accuracy for the Joule–
Thomson inversion behavior [11].

In this work, we calculate the bulk modulus from Eq. (9) at each
reduced temperature and pressure by initially solving Eq. (1) for any
chosen rr and Tr. Figures 1 to 3 show the calculated isothermal reduced
bulk modulus BT as a function of reduced pressure for two temperatures
and for three sets of substances including the noble gases, some hydrocar-
bons and some other selected substances such as O2, N 2, F2, and CO2.

Fig. 3. Same as Fig. 1 for N 2, O2, F2, and CO2. Experimental values are determined from
Eq. (15). The heat-capacity ratio and speed-of-sound data are taken from Refs. 17 to 19.

212 Maghari and Tahmasebi



Comparisons are made with experimental data [12–20], where the predic-
tions are represented by continuous lines and the experimental data by
symbols. As shown, at high pressures an approximate linear behavior of
the Tait–Murnaghan regularity is obtained for all selected substances. The
calculated isothermal bulk modulus as a function of reduced pressure is
consistent with the experimental values for noble gases, n-alkanes, and N 2

in both the liquid and supercritical regions, whereas for O2 and F2, the
Deiters EOS shows good predictions at supercritical conditions, but it
shows some deviations in the liquid region. Moreover, we observe that the
agreement between the predictions and the experimental values for CO2 is
relatively poor in both the liquid and supercritical regions. In our present
work, the experimental isothermal bulk modulus of fluids is determined
from the heat-capacity ratio and speed-of-sound data described in the
following manner.

Fig. 4. Comparison between the experimental and predicted isothermal bulk modulus as
a function of reduced density for noble gases. Predictions are represented by continuous
lines and the experimental data by symbols. Experimental values are determined from
Eq. (15). The heat-capacity ratio and speed-of-sound data are taken from Refs. 12 to 15.
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The propagation of sonic waves is nearly isentropic, so by using
Eq. (9) we can calculate the isentropic sound speed ns for real systems as

ns=5cRT
M

1“Pr

“rr

2
Tr

61/2

=5cRT
M

BT
61/2

(15)

in which R is the universal gas constant, M is the molecular weight, and
c is the heat-capacity ratio, c — CP/CV. Therefore, the experimental values
of the isothermal bulk modulus can be obtained from experimental data of
the speed of sound and the heat-capacity ratio of the system.

Figures 4 to 6 show the calculated isothermal reduced bulk modulus
BT as a function of reduced density rr for three temperatures for three sets
of substances in comparison with experimental data. As can be seen, the
isothermal bulk-modulus for Ne, Ar, and Kr is well matched by the Deiters
EOS for both low- and high-density regions, whereas for Xe it performs

Fig. 5. Same as Fig. 4 for CH 4, C 2H 6, C 3H 8, and n-C 4H 10. Experimental values are
determined from Eq. (15). The heat-capacity ratio and speed-of-sound data are taken from
Ref. 16.
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Fig. 6. Same as Fig. 4 for N 2, O2, F2, and CO2. Experimental values are determined from
Eq. (15). The heat-capacity ratio and speed-of-sound data are taken from Refs. 17 to 19.

well in the supercritical region. For the n-alkanes CH 4, C 2H 6, C 3H 8, and
n-C 4H 10, the results are within the experimental uncertainties, except for
n-C 4H 10 at higher densities. Figure 6 shows that the predictions for N 2,
O2, and F2 are in general very satisfactory, even at higher densities;
however, speed-of-sound data for fluorine are rather scarce in the litera-
ture. Additionally, a discrepancy is found on the liquid branch of CO2 at
rr > 2.2. As can be seen from Figs. 4 to 6, the Deiters EOS predicts this
intersection point, while our previous work showed that the cubic van der
Waals type equations of state are not capable of predicting the common
intersection point. The predicted common intersection points r0, r for
selected substances of this work are given in Table II.

Figure 7 shows the calculated Zeno contours (Tr–rr plane) of several
fluids using the Deiters EOS as compared to the experimental Zeno line,
where the calculations are represented by continuous lines and the experi-
mental data by symbols. As may be observed, in the case of noble gases,
the results are extremely good. For hydrocarbons, the calculated Zeno
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Table II. Predicted Common Intersection Point

Substance r0, r BT(r0, r)

Ne 2.72 24.7
Ar 2.73 24.8
Kr 2.72 25.6
Xe 2.87 25.9

CH 4 2.74 27.0
C 2H 6 2.77 27.5
C 3H 8 2.86 31.3

n-C 4H 10 2.89 33.9
N 2 2.80 29.4
O2 2.66 24.6
F2 2.65 26.4

CO2 2.80 30.6

Fig. 7. Comparison between the experimental and predicted Zeno contours of several
substances. Predictions are represented by continuous lines and the experimental data by
symbols. Experimental data are taken from Ref. 10.
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Fig. 8. Comparison between the experimental and predicted ‘‘reduced diameters’’ as a
function of reduced temperature of several substances. Predictions are represented by
continuous lines and the experimental data by symbols.

contours compare well, except for C 3H 8 for which the slope is larger than
the corresponding experimental value. Moreover, the predicted Zeno
contour for O2 is well matched by the Deiters EOS, while predictions for
N 2 and CO2 show some deviations in the low-density regions.

Figure 8 shows the predicted ‘‘reduced diameters’’ ( rd, r ) as a function
of reduced temperature Tr of several selected substances as compared to
experimental data. As shown in Fig. 8, the contour in the rd, r–Tr plane is
exactly linear, but the slope or intercept of some substances are slightly
different from the corresponding experimental values.

5. CONCLUSION

In this work, we have worked with a statistical equation of state,
called the Deiters EOS, to test for four important regularities: (i) Tait–
Murnaghan regularity, (ii) common bulk-modulus intersection point,
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(iii) linearity of the Zeno contour, and (iv) law of rectilinear diameters. The
Tait–Murnaghan regularity of the isothermal bulk modulus as a function
of reduced pressure exists for both subcritical and supercritical fluids over
a wide pressure range. The regularity of the isothermal bulk modulus as a
function of density retains its common intersection even in the compressed
liquid. Moreover, the Zeno line lies largely in the supercritical region,
whereas the line of rectilinear diameters of course lies in the subcritical
region.

These results show that the Deiters EOS can be used for good predic-
tions of the Tait–Murnaghan regularity as well as the common intersection
points for most selected substances. The results also demonstrate that the
Deiters EOS yields a nearly accurate and straight Zeno line for most sub-
stances. We have also observed that the ‘‘law of rectilinear diameter’’ is
satisfied by the Deiters EOS for all selected substances in this work.
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